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Abstract

This paper presents a computer model that includes the effects of paste conductivity and electrolyte diffusion on the capacity of lead
acid batteries. The model simulates the discharge of a complete cell by using finite difference equations to represent electrolyte diffusion
in the positive and negative plates as well as in the space between them. The critical volume fraction relates the maximum amount of
active material that can be reacted before the paste conductivity limits the reaction. The model uses this and other physical parameters to
predict cell capacity. These predictions are then compared with experimental results. q 1998 Published by Elsevier Science S.A. All
rights reserved.
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1. Introduction

The performance of lead–acid batteries is affected by a
number of mechanisms. At low discharge rates, the con-
ductivity of the positive active material limits the battery

w xcapacity as lead–sulfate is formed 1–3 . At higher dis-
charge rates, however, the reaction is limited by the slow

w xdiffusion of sulfate ions 4–7 . In an attempt to better
understand lead–acid batteries, a computer model was
developed that incorporates both of these capacity-limiting
mechanisms.

Other diffusion models that predict the behavior of lead
acid batteries have already been reported by a number of

w x w x w xresearchers 5–8 . Stein 5 and Horvath et al. 6 both`
investigated electrolyte diffusion using Fick’s laws. Stein
also developed empirical boundary conditions for the elec-
trolyte interface at both the positive and negative plates.

w xEkdunge and Simonsson 7 , experimentally studied the
w xdischarge behavior of porous lead electrodes. Ekdunge 8

also developed an integral mean value model that simpli-
fied the analysis of the concentration and potential gradi-
ents in the electrode.

Many researchers have also studied the effect paste
conductivity has on the performance of lead–acid batteries

) Corresponding author.

w x w x1,9–12 . Metzendorf 1 studied the dramatic change that
occurs after a certain amount of the active material has
reacted. Once this amount, which Metzendorf termed the
critical volume fraction, is reached the paste becomes
largely non-conductive and the reaction comes to a stop.
An aggregate-of-spheres model was developed by Winsel

w x w xet al. 9 and Winsel and Bashtavelova 10 that treats the
positive plate as a porous electrode consisting of intercon-
nected spherical particles. Edwards and Appel developed a

w xmodel 11 to study the conductivity of lead–acid battery
electrodes during low rate discharges. In his paper, he also
studied the effects of non-conductive glass microsphere
paste additives on the critical volume fraction.

Previous modeling at the University of Idaho includes
w x w xmodels developed by Appel 13 , Gill 14 , and Cantrell

w x15 . Appel used a MacLaurin series expansion to predict
the acid concentration within the positive plate, and finite
difference equations to model the acid concentration be-
tween the positive and negative plates. Gill improved his
model by using finite difference equations both between
the plates and within the positive plate to estimate the acid
concentration. Cantrell took the model one step further by
including the negative plate.

The model now includes finite difference equations for
both the positive and negative plates, as well as the
electrolyte between the plates. Conductivity and diffusion
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limiting effects are used by the model to accurately predict
the cell performance for a wide range of discharge rates.

The model produces voltage vs. time curves, capacity
curves, and acid concentration plots. Capacity curves show
the amount of reacted active material as a function of the
discharge rate. The acid concentration plots show the acid
distribution within the cell over time. The model predic-
tions are compared to experimentally gathered data previ-

w xously reported 16 .
The model presented here is helpful in understanding

the behavior of lead–acid batteries. It can also be a useful
tool in developing a cell design. A designer can specify
plate and cell parameters for an initial design. The model
can then be used to determine the cell’s performance and,
after evaluating the results, the designer can change the
parameters in an attempt to meet the desired specifications.
A number of iterations can be performed before the first
cell is fabricated and tested, saving considerable time and
money.

In Section 2, we derive the equations used in the model.
In Section 3, we compare the model results with previ-

w xously reported experimental data 16 . In Section 4, we
provide a summary of our results and our recommenda-
tions.

2. Model development

In this section, we derive the finite difference equations
that serve as the basis for the model. We adapt the general
solution to our problem by applying the necessary bound-
ary conditions. Once all of the finite difference equations
are developed, they can be placed in matrix form and
solved.

2.1. General finite difference equations

The partial differential equation governing the elec-
trolyte concentration within the cell is:

E C E J
˙sy qC 1Ž .pE t E x

where C is the molar concentration, J is the ionic flux, t
˙is time, x is position, and the term C gives the massp

Ž .generation per volume, m x,t rD xPD yPD z. This equa-˙
tion assumes that the diffusion is one-dimensional in the
x-direction. From Fick’s first law of diffusion, we get the
following relationship:

E C
JsD 2Ž .

E x

which means that the flux of ions past a perpendicular
plane is directly proportional to the concentration gradient
across that plane. The term D is the steady-state diffusion
rate. The model assumes that the diffusion coefficient is a

Ž .constant independent of acid concentration. When Eq. 2

Ž .is substituted into Eq. 1 , the final equation is the modi-
fied form of Fick’s second law:

E C E 2 C
˙syD qC 3Ž .p2E t E x

Ž . Ž .Eq. 3 is the general partial differential equation PDE
applicable both between the plates and within the positive
and negative plates. However, between the plates there is

˙no ion consumption or production so the C term is equalp

to zero.
To write the finite difference equations corresponding

Ž .to the PDE of Eq. 3 , the system of nodes shown in Fig. 1
is used. As the figure shows, nodes 1–30 comprise half of
the negative plate. Only half of the plate needs to be
modeled due to symmetry about the mid-plane. Nodes
31–70 represent the electrolyte between the plates and
nodes 71–100 characterize half of the positive plate. Note
that the spacing between the nodes in each of the three

Žsections D x , D x, and D x for the negative plate, elec-n p
.trolyte, and positive plate, respectively is not necessarily

the same. For typical cell designs, the nodes within the
plates are closer together than those between the plates,
giving better results inside the plates where accuracy is
more important.

To derive the finite difference equations, the Crank–
w xNicolson method 17 is used. This method is used because

it is second-order accurate in both time and space. This
accuracy is achieved by developing the difference approxi-
mations at the midpoint of the time increment. This method
also provides for a stable, convergent solution.

2.2. General finite difference equation between the plates

˙Between the plates, the C term is equal to zero whichp
Ž .simplifies the PDE in Eq. 3 to:

E C E 2 C
syD 4Ž .2E t E x

The general finite difference equation that applies between
the plates becomes:

ylClq1 q2 1ql Clq1 ylClq1slClŽ .iy1 i iq1 iy1

q2 1yl Cl qlCl 5Ž . Ž .i iq1

Ž . Ž 2 .where ls DPD t r D x , i is the node position, l is the
beginning of the time step, and lq1 is the end of the time
step.

2.3. General finite difference equation within the plates

˙Inside the plates, the C term is not zero. Therefore Eq.p
Ž .3 is the appropriate PDE and is given again for the
reader’s convenience:

E C E 2 C
) ˙syD qC 3 3aŽ . Ž .p2E t E x
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The diffusion rate, D) , used here is related to the diffu-
sion constant used between the plates, D, by the equation:

D
)D s 6Ž .

t

This new diffusion rate is defined to account for the
possibility of variable tortuosity, t , within the plates. The
tortuosity determines the distance over which the ions
must diffuse by affecting the shape of the path. A tortuos-
ity value greater than one increases the diffusion path
length and effectively decreases the diffusion rate. For our
derivation, the tortuosity of the plates was set equal to one.

Ž .The mass generation per volume term used in Eq. 3
can be written as:

m x ,tŽ .˙ i
Ċ s 7Ž .p

r PAPDxp ,n p ,n

where A is the cross-sectional area of the plates, D x isp,n
Ž .the node spacing of either plate shown in Fig. 1 , r isp,n

Ž .the percent porosity of either plate, and m x,t is the rate˙ i

of ion consumption at each node i. The denominator of the
Žequation above represents the electrolyte volume pore

.volume associated with each node in a particular plate.
Ž .To find the m term needed for Eq. 7 , an expression˙ i

has been developed based on the discharge current and the
decrease in concentration per unit of charge transport. The
total discharge current is supported by the sum of currents
at each of the individual nodes. The current drawn from
each node is based on the ion consumption and the result-
ing change in concentration at that node. The m term can˙ i

be written as a function of the current drawn from each
node, I , and the change in concentration per unit ofi

charge transport, E HrE Q. At the positive plate, this is
written as.

E H
m x ,t s I x ,t 8Ž . Ž . Ž .˙ i i ž /E Q q

A similar equation is written for the negative plate using
Ž .E HrE Q _. To determine the values of E HrE Q, the fol-
lowing overall equations for the reactions at the positive

w xand negative electrodes are used 5 .

qpole:
9Ž .y qPbO q2eqHSO q3H ´PbSO q2H O2 4 4 2

ypole:
10Ž .y qPbqHSO ´PbSO qH q2 e4 4

During discharge the charge transport is shared unequally

by the Hq and HSOy ions. To transport one electron4
q Ž . yrequires m H ions and 1ym HSO ions, where m is4
w xequal to 0.81 5 . For an external transport of 2 electrons,

the following processes are required per volume element
w xof electrolyte 5 .

qpole:
y qyHSO y3H q2H O yfromthe reaction4 2
q2mH yindue to thecharge transport

yŽ .y2 1ym HSO youtdue to the charge transport4

yyyyyyyyyyyyyyyq

11Ž .

Ž .y 3y2m H SO q2H O2 4 2

ypole:
y qyHSO qH yfromthe reaction4

yŽ .2 1ym HSO yindue to thecharge transport4
qy2mH youtdue to the charge transport

yyyyyyyyyyyyyyyq
Ž .1y2m H SO2 4

12Ž .

Therefore the decrease in acid per unit of charge transport
at the positive and negative plates can be written as.

E H 3y2mŽ .
sy 13Ž .ž /E Q 2 Fq

E H 1y2mŽ .
s 14Ž .ž /E Q 2 Fy

Žwhere F is Faraday’s constant approximately 96,500
.Crmol . Using a value of 0.81 for m returns a value of

y7.15=10y6 molrC at the positive plate and 3.21=
y6 w x10 molrC for the negative plate 5 .
The concentration at the positive plate decreases more

rapidly than at the negative plate not only due to the
extraction of H SO , but also because it is being diluted2 4

by the water formed during the reaction. The change in
concentration at the positive electrode due to the addition

w xof water can be estimated by the following equation 5 .

E H
w x w xsy 7.15q0.1865 C P 1y0.03 C� 4Ž .ž /E Q q

=10y6 molrC 15Ž .

w xwhere C is the concentration of H SO in molrl. For the2 4

fairly small changes in concentration seen in lead–acid
batteries, this value can be simplified to the constant value
stated above.

When the above relations are substituted into the PDE
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Fig. 1. Finite difference node arrangement.

Ž .in Eq. 3 , we find the general finite difference equation
inside the plates to be:

yl Clq1 q2 r ql Clq1 yl Clq1sl ClŽ .p ,n iy1 p ,n p ,n i p ,n iq1 p ,n iy1

q2 r yl Cl ql Cl qK m 16Ž .˙Ž .p ,n p ,n i p ,n iq1 p ,n i

D PD t 2D tp ,n
wherel s K s and the subscripts pp,n p,n2 AD xD x p ,np ,n

and n refer to either the positive or negative plate.The
specific diffusion rates, D , used above are calculatedp,n

from:
rp ,n

)D sD Pr sD 17Ž .p ,n p ,n
t

Multiplying D) by r further reduces the diffusion ratep,n
Ž .in proportion to the reduced area porosity of the plate.

The two general finite difference equations derived
Ž . Ž .above, Eqs. 5 and 16 , cover all of the nodes in Fig. 1

except for the boundary nodes. Section 2.4 discusses each
of the boundary conditions and derives the specific finite
difference equation that applies to those nodes.

2.4. Boundary conditions

Referring to Fig. 1, it can be seen that boundary condi-
tions exist at the nodes representing the center of the

Ž . Ž .negative plate 1 and positive plate 100 , the interface
Ž .between the negative plate and electrolyte 30, 31 , and the

Žinterface between the positive plate and electrolyte 70,
.71 . Each of these nodes requires a special finite difference

equation. However, due to symmetry, each boundary node
in the negative plate shares its boundary condition and

Žderivation with its counterpart in the positive plate e.g., 1
.and 100, 30 and 71, 31 and 70 . Hence, only the derivation

Ž .of the negative plate nodes 1, 30, and 31 is discussed, but
all equations are given.

( )2.5. Center of electrodes nodes 1 and 100

Node 1 occurs at the center of the negative plate as
shown in Fig. 1. The imaginary node 0 occurs on the
opposite side of the boundary. Due to symmetry about the
midplane, there is no concentration gradient across this
boundary and therefore no ion transfer. This relationship
can be written for both plates at the beginning and end of
the time increment as.

Negative plate: Cl sCl and Clq1 sClq1 18Ž .0 1 0 1

Positive plate: Cl sCl and Clq1 sClq1 19Ž .100 101 100 101

Ž .The above relationships in Eq. 18 can be substituted in
Ž .Eq. 16 to eliminate the imaginary node 0. Making this

substitution and collecting terms results in the boundary
equation for node 1.

2 r ql Clq1 yl Clq1s 2 r ylŽ . Ž .n n 1 n 2 n n

=Cl ql Cl qK m 20Ž .˙1 n 2 n 1

Notice that the imaginary node 0 is no longer a part of the
equation. Following the same derivation for the positive
plate results in the related boundary equation for node 100.

yl Clq1 q 2 r ql Clq1sl Cl q 2 r ylŽ . Ž .p 99 p p 100 p 99 p p

=Cl qK m 21Ž .˙100 p 100

( )2.6. Electroderelectrolyte interface nodes 30 and 71

Node 30 is the last node within the negative plate and
borders the electrolyte as shown in Fig. 2. Node N is an
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Fig. 2. Boundary condition at the negative platerelectrolyte interface
Ž .node 30 .

imaginary node used to approximate the concentration,
C , at the boundary between the negative plate and theN

electrolyte. Due to mass conservation it is assumed that the
flux of ions on one side of the boundary is equal to the ion
flux on the opposite side of the boundary. In mathematical
terms, this can be written as.

E C E C
JsyD syD 22Ž .n

y qE x E xx s0 x s0N N

where x s0y is the location just to the left of theN
Ž . qboundary inside the negative plate ; x s0 is the loca-N

Ž .tion just to the right of the boundary in the electrolyte .Eq.
Ž .22 can be rewritten in terms of the nodes shown in Fig. 2
as.

C yC C yCN 30 31 N
D sD 23Ž .n ž /ž /Dx r2 Dxr2n

The boundary concentration, C , can now be solved for inN

the above equation. After solving and simplifying the
result is:

R R3 4
C s C q C 24Ž .N 30 312 2

2 D D x 2 DD xn n
where R s R s A new3 4D D xqDD x D D xqDD xn n n n

second derivative in space is needed for this situation
because of the different spacing at the boundary.

1
l l

l lC yCŽ .29 30 C yCŽ .30 N2 y2E C 1 D x r2 D x r2n ns2 2E x D xn

1
lq1 lq1

lq1 lq1C yCŽ .29 30 C yCŽ .30 N2 y
D x r2 D x r2n nq 25Ž .

D xn

Ž .Eq. 25 can now be simplified by substituting in the
Ž .equation for C from Eq. 24 . This result is then insertedN

Ž . Ž .into Eq. 3 the temporal derivative is unchanged and
with much algebra we arrive at the boundary condition for
the last node in the negative plate, node 30.

yl Clq1 q yl R q2 r q3l Clq1 yl R Clq1Ž .n 29 n 3 n n 30 n 4 31

sl Cl q l R q2 r y3l ClŽ .n 29 n 3 n n 30

ql R Cl qK m 26Ž .˙n 4 31 n 30

Notice that if D sD and D x sD x in the above equa-n n
Ž .tion, then R sR s1 and Eq. 26 simplifies to the3 4

Ž .general equation inside the negative plate, Eq. 16 . This
confirms the validity of the boundary equation and shows
that it is merely a specialized case of the general equation.

Following a derivation similar to that of node 30 in the
negative plate results in the boundary equation for the first
node in the positive plate, node 71:

yl R Clq1 q yl R q2 r q3l Clq1 yl Clq1Ž .p 1 70 p 2 p p 71 p 72

sl R Cl q l R q2 r y3l ClŽ .p 1 70 p 2 p p 71

ql Cl qK m 27Ž .˙p 71 p 71

2 DD x 2 D D xp p
whereR s and R s .1 2DD x qD D x DD x qD D xp p p p

( )2.7. Electroderelectrolyte interface nodes 31 and 70

The boundary condition for the first node in the elec-
trolyte, node 31, is the same as that of the last node in the

Ž Ž ..negative plate, node 30 Eq. 22 . Therefore, the finite
difference equation is developed in a very similar fashion.
The difference results because node 30 is located inside
the plate, and node 31 is located in the electrolyte. Fig. 2
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shows the node arrangement used in deriving the boundary
Ž .equation. Eq. 22 can be written for this node as.

C yC C yCN 30 31 N
D sD 28Ž .n ž /ž /D x r2 D xr2n

We now solve for C as before and substitute it into theN

second spatial derivative. The second spatial derivative is
Ž .then used with Eq. 4 which results in the boundary

equation for the first node in the electrolyte, node 31.

ylR Clq1 q ylR q2q3l Clq1 ylClq1slR ClŽ .3 30 4 31 32 3 30

q lR q2y3l Cl qlCl 29Ž . Ž .4 31 32

where l, R , and R have been defined previously.3 4

Again, by letting D sD and D x sD x, R sR s1n n 3 4
Ž .and Eq. 29 simplifies to the general finite difference

Ž .equation between the plates, Eq. 5 .
The corresponding boundary equation for the last node

in the electrolyte, node 70, is.

ylClq1 q ylR q2q3l Clq1 ylR Clq1slClŽ .69 1 70 2 71 69

q lR q2y3l Cl qlR Cl 30Ž . Ž .1 70 2 71

2.8. Matrix solution

Writing the finite difference equations for each of the
100 nodes results in a system of equations which can be
put into the following Jacobian matrix form:

w x � 4 � 4A C s K 31Ž .
w xwhere A is a 100=100 tridiagonal coefficient matrix;

� 4 � 4C is a 100=1 vector of the node concentrations; K is
a 100=1 vector based on the concentrations of the previ-
ous time step.

Once all of the finite difference equations have been put
into matrix form, the system of equations can be solved
simultaneously using Jacobian matrix methods. During

� 4each time step, the new concentration vector, C , must be
determined. Using matrix algebra, the above equation can
be written as:

y1w x� 4 � 4C s A K 32Ž .
Ž .Normally, solving Eq. 32 would require extensive matrix

w xalgebra to invert the 100=100 A matrix. However, due
w xto the form of the finite difference equations, A takes the

form of a tridiagonal matrix. This is a common matrix
form found in many engineering problems and therefore

w xfast, efficient methods have been developed 17,18 to
solve for the relevant terms in this equation while ignoring
all of the zero terms. This eliminates the need to invert the

w xlarge A matrix.
At the beginning of the discharge, all of the nodes are at

the same concentration. To sustain the discharge current,
all nodes are discharged equally. However, after the first
time step, the acid concentration differs from node to node.

The electrolyte between the plates begins to diffuse into
the plates such that the nodes closer to the plate surface
have a higher concentration than those further inside. The
model is based upon the idea that the nodes will discharge
in the order of their acid concentration. This means that the
node with the highest concentration will discharge first,
followed by the node with the second highest concentra-
tion, etc. To control the discharge, the model uses a sorting
routine for both the positive and negative plates. These
routines sort the nodes from the highest concentration to
the lowest.

During subsequent time steps, the node with the highest
Ž .concentration the reaction node is discharged to the node

with the second highest concentration. The resulting cur-
rent is compared with the specified discharge current. If
these currents are equal, then the program proceeds to the
next time step by diffusing electrolyte into the plates and

Ž .calculating the new concentration array using Eq. 32 . If
the discharge current has not been met, the node with the
next lower concentration becomes the reaction node. All
nodes with concentrations higher than the reaction node
are then discharged to the reaction node and the current
drawn from each discharged node is summed to determine
if the discharge current is supported. Whenever the dis-
charge current is not supported, the reaction node is
changed to the next lower concentration and the process is
repeated. Once the discharge current is met, the model
proceeds to the next time step and the concentration array
is updated. If the reaction node must be moved to the
lowest concentration in the plate, all of the nodes are
reacted to the same concentration. If the resulting current
is still insufficient, then all of the nodes are discharged to a
concentration level that will support the discharge current.

During every time step, each node is also checked to
see how much active material has reacted. During dis-

Ž .charge the conductive active material PbO or PbO is2

converted to nonconductive PbSO . Metzendorf’s critical4
w xvolume fraction hypothesis 1 states that once the ratio of

reacted to unreacted material, known as the critical volume
fraction, reaches a certain point, the reaction stops. To
account for this condition in the model, the ratio of
material reacted at any node is limited to the specified
critical volume fraction by using the following equation.

T
l

D I D tFhC 33Ž .Ý i s
ls1

where D I is the current at each individual node, T is thei

total discharge time, D t is the time step, h is the critical
volume fraction, and C is the theoretical stoichiometrics

capacity associated with each node.
As soon as any node reaches its critical volume frac-

tion, the node is ‘turned off’ by setting the m term for that˙
node to zero. This means that this node can no longer
contribute to the discharge current. As a result of the node
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� 4being turned off, the K vector is also altered to reflect
this change during future time steps.

By knowing the concentrations at each node and for
each time step, concentration profiles can be drawn. Exam-
ples are given in Section 3. The concentrations can also be
used to determine the cell voltage during each time step by

w xusing the Nernst equation 19 :

2.30 RT
EsE8y log Q 34Ž .10nF

where E8 is the equilibrium potential, R is the gas con-
stant, T is the absolute temperature, n is the number of
electrons transferred during the reaction, F is Faraday’s
number, and Q is the reaction quotient. By applying this
equation to the positive and negative electrodes at 313 K
Ž .408C , the following equations result.

3q yw xE sE8 q0.031P log H HSO 35Ž .Ž .q q 10 4

q yw xH HSO4
E sE8 y0.031P log 36Ž .y y 10 2qw xH

By noting that the equilibrium potential of the positive
w qx w yxelectrode, E8 , is 1.602 V and that H and HSO areq 4

w x Ž .nearly equal to the total acid concentration, C , Eq. 35
can be simplified to.

w xE s1.602q0.124P log C 37Ž .q 10

Ž .Referring to Eq. 36 , the potential of the negative elec-
trode, E , has hardly any dependence on the acid concen-y
tration. Therefore it is nearly constant and equal to E8y
which is y0.303 V. The positive and negative potentials
can be combined to get the total cell potential by using the
following expression.

EsE qE 38Ž .q y

The final equation used to determine the cell potential is
Ž .found by substituting E and E into Eq. 38 :q y

w xEs1.905q0.124P log C 39Ž .10

w xwhere C is the acid concentration in molrl. The mini-
mum concentration in the positive plate is used in the
above equation to determine the cell potential at each time
step. When the cell potential drops to a pre-determined

Ž .voltage usually 1.75 V , the model discontinues the dis-
charge process. By keeping track of the potential during
the entire discharge, voltage vs. time curves can be con-
structed. Section 3 uses these curves as a method to
compare the predicted model data to experimental data.

3. Model verification

In order to run the model developed in Section 2.8, a
number of physical parameters are needed. These parame-

Table 1
Model parameters used for the simulation of a commercial cell

Plate type Commercial

PositiÕe plate
Ž .Plate thickness cm 0.244

2Ž .Plate area cm 114.2
3Ž .Grid volume cm 1.768

Ž .PAM weight g 83
Critical volume fraction 60%
Percent porosity 34%
Glass microsphere additives 0%
Ž .volume percent

Ž .Stoichiometric capacity APh 18.6

NegatiÕe plate
Ž .Plate thickness cm 0.185

2Ž .Plate area cm 114.2
3Ž .Grid volume cm 1.768

Critical volume fraction 60%
Percent porosity 34%

Miscellaneous
Distance between 0.254

Ž .plates cm
Initial acid concentration 5.04
Ž .molrliter

Ž .Cutoff voltage volts 1.75
Ž .Electrical resistance of V y0.026

the cell
Ž .Initial voltage correction volts 2.13773

y5Diffusion constant of 2.590 e
2Ž .H SO cm rsec2 4

ters are determined by the plate type, cell design, and other
factors. Section 3.1 lists and discusses these parameters. In
Sections 3.1 and 3.2, the computer model is used to
simulate commercial standard positive and negative plates.
The results are verified by comparing them to experimen-
tal data. The experimental data for these plates was gath-

w xered by Edwards and Srikanth 16 . The model is also used
to predict the behavior of plates with glass microsphere
paste additives. These results are then compared with
additional experimental data gathered by Edwards and

w xSrikanth 16 .

3.1. Model parameters

The parameters needed in the model include variables
that relate the physical dimensions of the plates as well as
variables that control the diffusion and conductivity behav-
ior of the paste. Table 1 lists the set of parameters used in
Section 3.2 to model the commercial standard plates.

The diffusion behavior of the cell is governed by a
number of the model parameters. The plate dimensions and
porosity are used to determine the amount of electrolyte
stored within the plates. The electrolyte inside the plates is
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Ž .Fig. 3. Comparison of voltage vs. time curves for standard commercial cells discharged at various rates 0.023 and 0.059 Arg .

important, especially at high rates, because this electrolyte
does not need to diffuse to react. The acid diffusion
constant of 2.590 ey5 cm2rs is based on low acid concen-
trations at approximately 388C. The low concentration

diffusion constant is used to more closely approximate the
cell behavior at the end of discharge.

The conductivity parameters include the electrical resis-
tance of the cell and the open circuit voltage, which

Ž .Fig. 4. Comparison of voltage vs. time curves for standard commercial cells discharged at various rates 0.03, 0.041 and 0.09 Arg .
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Ž .Fig. 5. Comparison of voltage vs. time curves at various discharge rates 0.086, 0.060, and 0.034 Arg for positive plates containing 19.5% by volume
nonconductive glass microspheres.

depends on the initial acid concentration and the activity
coefficients. The values listed for these variables also take
into account the resistance of the test equipment in order to
accurately reproduce the experimental conditions. Another
important conductivity parameter is the critical volume
fraction which can be affected by the amount of paste
additives. This critical volume fraction is determined from
another computer model developed specifically for this

w xpurpose 2 . The discharge is also dependent on the cutoff
voltage, which determines when the reaction is stopped.

3.2. Experimental comparisons

Figs. 3 and 4 compare voltage vs. time curves produced
by the new model with experimental data previously re-

w xported by Edwards and Srikanth 16 . The data has been
split into two different figures for clarity. The model

Ž .Fig. 6. Comparison of voltage vs. time curves at various discharge rates 0.142, 0.099, and 0.057 Arg for positive plates containing 34.0% by volume
nonconductive glass microspheres.
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Fig. 7. Concentration profiles of a standard commercial cell discharged at 0.041 Arg plotted every 1000 s.

allows the time step and time between data points to be
specified independently. This allows the use of a small

Ž .time step 1 s for high accuracy, while reducing the large
amount of data produced during a slow discharge. As the
figures show, the model predicts the test results fairly
accurately, especially at the medium to low rates. At
higher rates, the model tends to overestimate the capacity
of the cell. This is possibly attributed to an oversimplifica-

tion of the cell resistance by neglecting the porosity and
resistance of the separator.

The model can also simulate the effects of paste addi-
tives. To validate the model’s capability to accurately
simulate these effects, model predictions are compared to
experimental additive data gathered by Edwards and

w xSrikanth 16 . Fig. 5 gives voltage vs. time curves for a
positive plate containing 19.5% by volume of nonconduc-

Fig. 8. Concentration profiles of a standard commercial cell discharged at 0.059 Arg plotted every 1000 s.
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Fig. 9. Percentage of positive active material reacted as a function of distance inside the positive plate after every 2000 s.

tive glass microspheres. The discharge rates shown in the
figure are 0.086, 0.060, and 0.034 Arg. Both the computer
generated curves and the experimental data are included in
the figure. As the reader can see, the computer generated
curves provide a reasonable representation of the experi-
mental curves.

Fig. 6 shows various voltage vs. time curves for a plate
containing 34.0% by volume of non-conductive glass mi-
crospheres. The figure is similar to Fig. 5 and compares
the model predictions to experimentally gathered data at
discharge rates of 0.142, 0.099, and 0.057 Arg. Again, the
computer predictions follow the experimental curves fairly
closely.

The model can also be used to estimate the acid distri-
bution within a cell. Fig. 7 shows the model prediction of
acid concentrations throughout a standard cell every 1000
s during the 0.041 Arg discharge shown in Fig. 4. The
x-axis represents the node distance starting from the mid-
plane of the negative plate. The y-axis indicates the con-
centration in molrl for each node. The beginning of the
discharge starts with equal concentrations at each node
Ž .the top line . As the discharge progresses, the electrolyte
in the plates is consumed, while the electrolyte between
the plates diffuses into the plates. This causes the concen-
tration to drop throughout the entire cell. The steeper
concentration gradients at the positive plate reflect the

Ž . Ž .conditions derived earlier in Eqs. 13 and 14 .
Fig. 8 shows a concentration profile similar to that of

Fig. 7. However, the discharge rate has been increased to
0.059 Arg. The time between curves is again 1000 s. The
reader will notice that the concentrations drop more rapidly,
reflecting the higher discharge rate. Between the plates, the
concentrations stay higher because there is insufficient

time for the electrolyte to diffuse into the plates before the
reaction stops.

The model output can also be used to develop PbSO4

distribution curves like those shown in Fig. 9. This curve
plots the amount of material that has reacted at each node
in the positive plate every 2000 s. This curve is for a
standard commercial cell discharged at 0.023 Arg as
shown in Fig. 3. The vertical axis represents the percent-
age of active material that has reacted within the positive
plate. The horizontal axis shows the position within the
positive plate starting at the electrolyterelectrode inter-
face, and ending at the midplane of the positive plate. The
reader can see that the nodes near the surface of the plate
are reacting to their critical volume fraction of 60%. As the
discharge continues, the reaction continues towards the
center of the plate. The nodes cannot react more than their
critical fraction because they have been ‘turned off’ by the
program, as discussed earlier. The shape of the curve
shown in Fig. 9 is similar to experimental lead sulfate

w xdistribution curves reported by Bode 4 and Simonsson
w x3 .

4. Summary and conclusions

The model presented in this paper uses finite difference
equations to predict the behavior of lead–acid batteries.
The model includes both diffusion and conductivity param-
eters including the critical volume fraction, porosity of the
electrodes, cell resistance, and initial acid concentration.
These parameters are used in the finite difference equa-
tions to model the behavior of both electrodes as well as
the electrolyte between them. A sorting routine is used by
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the model to estimate where the active material will dis-
charge within the electrodes at each time interval. This
routine also uses the critical volume fraction to limit the
total amount of material reacting. The predicted results
compare reasonably well with experimental data, espe-
cially at medium to low rates. The present model predicts
battery capacity over a wide range of discharges and can
be used as an effective tool for designing batteries, includ-
ing those for EV and HEV applications.
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